A new image taken by the German-French Mobile Asteroid Surface Scout (MASCOT) on the surface of the near-Earth asteroid Ryugu. "It really shows that Ryugu is the product of some kind of violent process," Ralph Jaumann of the German Aerospace Center, who is the lead author of a paper describing the findings in the journal Science, told AFP. Photo: AFP / HO / Jaumann et. al., Science 2019

Photographs snapped by a shoebox-sized probe that explored the near-Earth asteroid Ryugu offer new clues about its composition, insights that are expected to help scientists understand the formation of our solar system.

The German-French Mobile Asteroid Surface Scout (MASCOT) was dropped off by Japan’s Hayabusa2 spacecraft on October 3, 2018, free-falling from a height of 41 meters (135 feet) for six minutes before it hit the surface.

It then bounced a couple of times – reaching a height of 17 meters on the first bounce – before coming to rest.

Ryugu is just 900 meters wide and so its gravity is 66,500 times weaker than Earth’s. Had MASCOT been equipped with wheels, its forward motion would have launched it back into space.

Instead, it hopped around the surface using the tiny amount of momentum generated by a metal swing arm attached to its boxy body, which weighed 10 kilograms (22 pounds).

In addition to taking temperature readings and other measurements, MASCOT sent back a series of pictures showing the asteroid is covered with two types of rocks and boulders: dark and rough ones with crumbly surfaces resembling cauliflowers, and bright and smooth ones.

“The interesting thing there is, it really shows that Ryugu is the product of some kind of violent process,” Ralf Jaumann of the German Aerospace Center told AFP. He is the lead author of a paper describing the findings, published Thursday in the journal Science.

Ryugu may be the “child” of two parent bodies that collided, broke up and were then pulled back together by gravity, the researchers say.

Alternatively, it could have been struck by another body that created different interior temperature and pressure conditions, creating the two types of material.

Many of the rocks contain small blue and red “inclusions” – material  trapped in the rock during its formation – much like a type of rare, primordial meteorites found on Earth called carbonaceous chondrites.

“This material is primitive material – it’s the very first material of the solar nebula,” or the cloud of interstellar dust and gas that formed the planets of our system, said Jaumann.

Hayabusa2, which set off from Earth in 2014 and itself touched down twice on the asteroid’s surface, most recently in July, will arrive home next year carrying samples for analysis in the lab.

MASCOT’s observations provide, for the first time, information on the material’s original geologic context, including how it is exposed to temperature changes and how it is “weathered” in space.

“We don’t know how planets formed in the beginning,” said Jaumann.

“And in order to understand this, (we must) go to the small bodies, these primitive bodies, primordial in their history in their evolution, in order to understand the first 10 to 100 million years of planetary formation.”

A dust mystery

MASCOT also presented scientists with a new mystery: its lack of fine particles, or interplanetary dust, which would normally accumulate through millions of years of space weathering.

The paper offered theories but no definitive conclusions.

The dust might have fallen into tiny holes in Ryugu’s surface when the asteroid was struck by other bodies.

Alternatively, temperature changes could have resulted in an electrostatic force that expelled the dust into space. Or water might once have existed on Ryugu, and its evaporation would have carried away the smaller particles.

There’s another reason to study asteroids: humankind’s survival could one day depend on it.

Ryugu’s orbit places it mainly between Earth and Mars. Though it comes close, it’s not thought to pose a danger to us, but other asteroids could.

If their composition is like Ryugu’s, trying to take them out with a missile would probably just break them into smaller rocks still headed toward Earth.

One possibility would be to build a large, reflective solar sail and place it on the asteroid’s surface, so that the pressure from solar radiation would gradually alter its course, said Jaumann.

Whatever strategy is adopted, he and other astronomers say it’s clear these small, enigmatic bodies are of not-so-small importance in our solar neighborhood.

AFP

Join the Conversation

8 Comments

  1. When I initially commented I clicked the “Notify me when new comments are added”
    checkbox and now each time a comment is added I get four e-mails
    with the same comment. Is there any way you can remove me
    from that service? Many thanks!

  2. I was curious if you ever thought of changing the layout of your site?
    Its very well written; I love what youve got to say.
    But maybe you could a little more in the way of content so people could connect with
    it better. Youve got an awful lot of text for only having one or two pictures.
    Maybe you could space it out better?

  3. Today, I went to the beach with my children. I found a sea shell and gave it to my
    4 year old daughter and said “You can hear the ocean if you put this to your ear.” She
    placed the shell to her ear and screamed. There was a
    hermit crab inside and it pinched her ear. She never wants to
    go back! LoL I know this is entirely off topic but I had to tell someone!

  4. I know this if off topic but I’m looking into starting
    my own weblog and was curious what all is required to get set
    up? I’m assuming having a blog like yours would cost a pretty penny?
    I’m not very web savvy so I’m not 100% positive. Any
    recommendations or advice would be greatly appreciated. Appreciate it

  5. Hi there! Do you know if they make any plugins to help
    with Search Engine Optimization? I’m trying to get my blog to rank for some targeted keywords but I’m not
    seeing very good gains. If you know of any please share.

    Thank you!